3x^2-8-10x=3(2x+3)

Simple and best practice solution for 3x^2-8-10x=3(2x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2-8-10x=3(2x+3) equation:



3x^2-8-10x=3(2x+3)
We move all terms to the left:
3x^2-8-10x-(3(2x+3))=0
We calculate terms in parentheses: -(3(2x+3)), so:
3(2x+3)
We multiply parentheses
6x+9
Back to the equation:
-(6x+9)
We get rid of parentheses
3x^2-10x-6x-9-8=0
We add all the numbers together, and all the variables
3x^2-16x-17=0
a = 3; b = -16; c = -17;
Δ = b2-4ac
Δ = -162-4·3·(-17)
Δ = 460
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{460}=\sqrt{4*115}=\sqrt{4}*\sqrt{115}=2\sqrt{115}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{115}}{2*3}=\frac{16-2\sqrt{115}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{115}}{2*3}=\frac{16+2\sqrt{115}}{6} $

See similar equations:

| m²+8m=16 | | x-8+7x=90 | | 23+7v=5(2v+8)+4 | | 22=5z-28 | | 12+2(4x-3)=22 | | 19x+5+17x-5=180 | | 7/2(4n-8)+6=4/3(9n-12) | | g/2−–8=10 | | 3m+6=2-m | | 5(x+2)=5(x+5)-15 | | 11(7)-9+30+5y-8=180 | | −4x−5=27 | | 21x-2=166 | | 6x^2-9x=135 | | 3-2b=9-5b | | 3.2y+10.1-2.1y=5+0.8y | | x^2-900-339000=0 | | 3x4=12x3x2= | | g/2− –8=10 | | 2x-x+7=3x+3+3-2x | | -3-7q=-8q | | 2(x-1)-6=10(1-x | | 9x+17+9x+17=180 | | c-85/2=6 | | (75-2x)+(91-3x)=180 | | -2p+5=27-4 | | 7x+7=2x-11 | | 3x-4+1=–2x–5+5x | | -13+n=17 | | 6s=-10+5s | | 1x+4=2x+-6 | | 2r-3=-4r+3 |

Equations solver categories